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This report deals with the digital simulation of optical wavefronts
which have been degraded by propagation through a turbulent atmosphere,
Such simulated wavefronts are necessary in the computer simulation
of optical systems operating on atmospherically degraded light. Such
system simulation is very desirable because of the expense of building
Prototype systems and testing them at remote locations after construction.
The prime motivation is computer testing of compensated imaging systems
for viewing objects at extremely large distances through the atmosphere,

The computer generated wavefronts to be described here are characterized
by other factors. They simulate Tight which has propagated vertically
through the atmosphere and have as a result an extremely long outer
scale, The wavefronts also include amplitude as well as phase fluctuations
and the effect of the cross correlation between them,

1. INTRODUCTION

In the past, two techniques have been used to generate members
of random ensembles: the Fourier transform technique and the orthogonal
polyromial technique. In the Fourier transform technique the power
spectrum of the random function is assumed known. An array of uncorrelated
gaussian random numbers with zero mean and unit variance is generated
using standard digital computer programs. The Fourier transform of
the array is computed and multiplied by the square root of the power
spectrum and the inverse Fourier transform of the product is computed.
The resulting array 5till has gaussian random variab]es but the correlation
function is now that related to the power spectrum as desired.

In the orthogonal polynomial technique the random function is
represented as a sum of orthogonal polynomials, with random coefficients.
For example one might use Zernike polynomials to represent a random
function in a round aperture. This scheme is frought with peril however,
unless the polynomials happen be statistically independent. Otherwise
there will be cross-cor+elation between the various polynomial coefficients.
A more desirable approach would use the Karhunen-Loeve technique (Davenport,
1958) in which a set of polynomials is generated which are eigenfunctions
of the covariance function. The random function ic then expanded
as a seri2s of these eigenfunctions. Coefficients of the eigenfunctions
are then known to be statistically independent.

Simultation of random atmospheric quantities has been performed
using the Fourier transform technique (Hogge, 1973), (Bradley, 1974) where
refractive index variations were generated. The Fourier transform
technique has also been used (McGlammery, 1974), (Brown, 1974) for the
simulation of respectively two and one dimensional random phase fronts.

Random wavefronts have also been generated using a sum of Zernike
polynomials (Noll, 1974) and the Cholesky decomposition (Bradley, 1974),
The work herein also related to the wavefront polynomial fitting scheme
of Fried (1965) and to general work on Karhunen-Loeve series,
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In this report we extend previous work in that both log-amplitude
as well as phase are considered as well as their cross-correlation.
We also consider spatial spectra of much larger frequency range than
heretofore used. The result is an approach which combines both the
polynomial and Fourier transform technique approaches in an optimum
fashion.

In this paper a random wavefront is represented as the sum of
soveral terms, each pertaining to a different spatial frequency range,
In cach range a technique appropriate to the range is used to generate
poth phase and 1og-amplitude fronts. In the highest spatial frewuency
range the Fourier transform technique is used, extended to produce
phase as well as log-amplitude fronts. In the lower spatial frequency
ranges wnere the fluctuations are less rapid a polynomial scheme is
used which starts out with a set of polynomials similar to Fried's
but including more terms and ends up with the statistically independent
Karhunen-Loeve polynomials. These are then summed with random independent
coc:fficients to provide a particular manifestation.

In the balance of the paper we will first present the physical
picture considered along with a description of the spectral separation
technique. Then the high frequency problem will be considered, in-
cluding coupled phase and log-amplitude. In the next section the
development of the polynomial fitting scheme used for the lower spatial
frequency ranges will be presented. This will include the generation
of a set of polynomials and their diagonalization to form the Karhunen-
Loeve functions. Following that the result of all the techniques
is demonstrated and a typical representation shown. The final section
contains discussion, summary and conclusions.

2. GENERAL STATEMENT OF PROBLEM AND
FREQUENCY DIVISION

The general physical picture which we are considering is shown
in Fig, 1 where we see a 1ight beam propagating from a great height
down thrcugh an atmosphere with fluctuating refractive index to the
input aperture of an optical system. It is assumed that the outer
scale Lo and the structure parameter C§ of the turbulent fluctuations
vary with height.

We desire to generate an ensemble of random phase and log-amp1itude
fronts over the input aperture. The phase and log-amplitude fronts
should be normally distributed with the spatial autocovariances and
crosscovariances or equivalently the spatial power spectra and cross
spectra appropriate to the situation. Finally the phase and log-amplitude
should respond faithfully to all scale sizes from the largest to the
smallest.
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Fig. 1. IMlustration of physical situation considered.




The spatial spectra of the phase and log-amplitude auto-covariances
and their cross-covariance are calculated in Appendix A and are shown
graphically in Fig. 2 for a coherence length ro of 60 cm wavelength
of 0.6328 microns and ratio of source height to receiver height of
174, They were calculated using standard techniques (Tatarski, 1971).

Examination of the spectra reveal one major problem, the tremendous
strength associated with the low spatial frequencies corresponding
F to scale sizes much larger than the aperture. We note that the knee
| in the phase spatial spectrum curve occurs at = 10-9 rad'm~! which
: corresponds to a spatial scale of 6 x 109 meters. If we were going
‘ to use the Fourier transform technique without any modifications we
{ would need a grid at least 10 meters on a side and with elements
much smaller than the input aperture, say a millimeter in size. That
indicates a square matrix array with 108 elements on a side, indeed
not the simplest task. If a coarser grid were used there would be
too rapid a change between the lowest spatial frecuency component
and the next higher one. With such a rapid change in the spectrum
the discrete Fourier transform operation would not taithfully represent
the spatial behavior without aliasing.

Another part of the problem is that the large scale fluctuations
are much larger than the aperture size. The large scale fluctuations
will have relatively smooth variations over the size of the aperture.
] Some method must be found for representing only the portion of the
! large scale fluctuations which are present.

In order to solve the problem of representing the large scale
fluctuations we conceptually split the representation problem into
two parts: dividing the spatial spectrum and relating the portions
of the spatial spectrum to fields over the aperture. We first consider
the problem of dividing the spatial spectrun into sections.

To continue we split the spatial spectrum up into regions, each
region being sufficiently small so that it can be represented by a
reasonable number of discrete points. Thus the two-dimensional spatial
spectrum would be

where Fy is the contribution to the spatial spectrum from ihe highest
spatial frequency range, Fy is the contribution from the next to highest
frequency range and so on. The various spectral ranges are centered
about the origin and have the following frequency limits.
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Fig. 2. Log-log plots of square root of spectra of log-amplitude and
phase covariances and of phase-log-amplitude cross covariance.
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The fraction 31/32 occurs because the element (33,33) was chosen to
represent the zero spatial frequency. Thus each spectral region
corresponds to a square spatial region 32" meters on a side.

In the discrete representation used for the spectrum in the highest
; spatial frequency range all but the zero frequency spectral value are
identical to the true spectral value

( .
(2) Fylegur,) = Flogur) [y = 20(k33)
Ve = 2n(38=lhln = Kl < 64
: y
‘vx.h.'y f O

The value at zero frequency is somewhat arbitrarily chosen. This is
necessary because the actual value for some of the spectra is vastly dif-
ferent from that of the first harmonic, so that aliasing would result in
the corresponding position function if it were used. To avoid this a
particular procedure is used. We impose the requirement that a finite
Fourier series representation of the spectrum represent the spectrum
not only at the discrete points but in between the points also. To
check this requirement a value of the spectrum at zero frequency is
chosen approximately equal to the value at the first harmonic. The
spectrum is represented as a finite Fourier series and then evaluated
at non-integral values of K and L. For a reasonable value of the zero
frequency component the spectrum varies smoothly from one point to another.
For an improper choice there are oscillations or ringing between the
discrete points.

For the next, n=1, region of the spatial spectrum a discrete
representation is also used. In this case it will be used as an intermediate
step. The discrete representation is formed from the true spectrum
with the spectrum for n=0 subtracted. In essence this means that
the spectrum for n=0 is evaluated at each of the discrete points between
zero and the first harmonic
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and subtracted from the true spectrum at those points. This procedure
has the advantage that the newly formed spectrum goes to zero at the
edge of the spectral region thus rendering it automatically band-limited.
The zero frequency spectral value in the n=} region is determined in a
manner identical to that used in region n=0,

The procedure for the other spectral regions is identical to that
used in region n=1.

The procedure for generating random arrays over the one meter
aperture from the spectra associated with all but the highest spatial
frequency spectral region involves a procedure using polynomials. This

will be described presently. First to form the basis we consider a
simpler approach.

With the spectra decomposed as indicated it is a simple matter to
use the Fourier transform procedure to generate five sets of random
arrays of different sizes and to find the contribution to an area one
meter square in the center of the larger arrays. One would need some
sort of interpolation procedure to go from the discrete arrays to a
much smaller grid a meter square. Then the sum of all the contributions

over the square meter would represent the wavefront. This would be the
direct approach.

We use an alternative and operationally faster procedure for finding
the contributions over the square meter aperture arising from the lower
spectral ranges. The procedure as indicated previously is to expand /
the contribution to the phase front across the aperture in a series of {
polynomials with random coefficients. The variances of the coefficients
are determined from the spectra for the given range.

One might envision the procedure as having the following steps.
Suppose we were to use the Fourier transform procedure to calculate a
large number of random wavefronts for each of the spectral regions. The
wavefront contribution corresponding to the highest frequency spectral
range is retained for use as is. Then suppose we choose a one meter
square with 642 points in the center of all random wavefronts for each
of the other spectral ranges. We then interpolate from the large square
grids to the one meter square grid. The interpolation should be per-
formed assuming that the Fourier series representation for each random
manifestation was a continuous one and evaluating it at the 642 points
in the central one meter array. Alternatively the sampling theorem
could be used for the interpolation. The values at the 64 points for

each manifestation would be used to find the coefficients for a polynomial
expansion of the manifestation, The coefficients would vary randomly from

e —




one manifestation to another. Indeed since the wavefronts vary randomly
with normal distribution and zero mean the polynomial coefficients will
also vary randomly with zero mean. One would find the variance of the
coefficients for each spectral range by averaging the square of each
coefficient over the set of manifestations.

Thus one would end up with a polynomial series for each spectral range
representing the front over the central square meter. The coefficients of
the polynomials would be normally distributed with zero mean and known
variinces. To generate another random manifestation one would merely
generate a new set of coefficients ucing standard random number generation
schemes.  Assuming the number of random coefficients required is less than
642 the procedure is guicker-.

In the procedure to follow one further step will be added, slightly
complicating the wathematics. That is that polynomials will be found that
will simultaneously represent both phase and log-amplitude. Also the
Fourier transform procedure that is used directly for the highest spatial
frequency portion of the spectrum must be modified to simultaneously generate
both phase and log-amplitude fronts.

In the next section the extension of the basic Fourier transform
procedure to include coupled phase and log-amplitude will be considered.
In the section to follow the polynomial approach used for the lower regions
of the spatial <pectrum will be derived in general terms.

3. HIGH SPATIAL FREQUENCY REPRESENTATION

e now describe the procedure used to generate the contribution to the
random wavefronts from the highest spatial frequency region. The procedure
used is based on the Fourier transform approach but is more general. The
approach is extended to two random fronts, phase and log-amplitude, which
are correlated The basic expressions derived here will also be used in
the next section in the derivation of the representation for the lower
spatial frequency contributions. We assume that the spectra of the phase
and log-amplitude covariance functions F¢(<x.wy) and F; (xx,xy) respectively,
as well as the spectrum of their cross-covariance, F9 Kya¥, ) are
available. i y

The procedure will be to postulate a particular model and then show
that it can be made to have the desired properties. To begin, for a singie
manifestation we generate two square matrices, Ry(I,J) and R2(1,J) of
statistically independent samples (Hogge, 1974) from a distribution which
is gaussian with zero mean and unit variance. Stated mathematically, this
is

(4) <Ry (1,0)R;(K,L)> = 4,11 K L

e e i i e o o R
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where the angular brackets denote the expectation operator., We then
postulate that the discrete spectra of the phase and Tog-amp1i tude
covariances can be represented respectively by

(5a) ¢(KKO.LKO) = Fa(Kxo.Lro)R](K,L) + Fb(KKo,LKO)RZ(K.L)

—
(8]
o

~

b
2

-
—
—

i

= Fa(Kb,,o.L»Lo)R](K,L) + Fb(Kno.LKO)RZ(K,L)

In Eqs, (5) K and L are integers, vy is the numerical valie of the
spatial frequency spacing, and the spectra Fas Fby Fc are as yet
undefined. The values of xo Will depend upon the particular
spatial frequency range.

The desired expected values are

(6a) <:'(K0:0,Lr.

(6b) <'-:(Kro.u-o)'2> = ¢l F,(Kegabry)

(62)  <lf(KeyLr

To evaluate the unknown functions Fas Fby and F. we substitute
Eas. (5) into Eqs. (6) to obtain

(7a) I = <]y

12 é 2 e 2
Fal <Ry IS4 1< IRy % = [F |24 |F |
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In Eqs. (7), use has been made of the statistical independence of the
matrix elements stated in Eq. (4). Solving Eqs. (7) for Fa, Fp, and
Fc’ we obtain (for the case where Fa' Fb and FC are real),

F -F
e T S—

" —
‘dfF;:éra¢+Fz

(8a) F

/ 2
) Fon'Fa
KoJF¢'2Fa¢+Fa

(8c) Fc = -Q___ﬂ_____
«gf Fy-2Fy *F,

ihese three spectra are displayed in Fig. 3 for the complete spectrum,
Note that the magnitude of F. is plotted since it becomes negative
at <« ¥ 107,

Thus to generate one sample wavefront the procedure is to generate
the two random matrices, RI(K’L) and Ra(K,L) and then ¢(Kcg,lLxg)

and (Keg,Lro) using Fas. (5) and then to take the inverse transform
using

-jZW[(I-l)rSK-l)*(J-l)(L-l )]
{9a) @(Ixo.dxo) = Ki 22 o(Kxo.on) e .

-jZW[(I-l)15-1)-(J-1)(L-1)l
Kg 22 j«KKO.LKo) e 9

(9b) z(Ixo.Jxo)

Equations (5) and (8) completely describe the desired model for
the generation of random wavefronts. The model requires the use
of two arrays of random numbers, and three spectra which are nonlinear
combinations of phase and 10og-amplitude and cross covariance power
spectra, Wavefronts generated by this model have been demonstrated
to have the correct first and second order statistics.

10
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For the case at hand where the spectra must be divided into regions
it is the spectra Fas Fpe and Fc which would be divided since it

is those spectra from which the random spectra and random wavefronts
are generated. Thus the procedure would be to take the spectra in

Fig. 3 which have been formed from the undivided log-amplitude, phase
and cross spectra of Fig. 2 and apply the spectral divisions, and

find the best zero frequency value. Equations (3) (2) and (9) then
give the wavefront manifestations, applicable to any spectral region.

In this saction we have considered the generalization of the
Fourier transform procedure to the case of coupled phase and log-
amplitude. The equations for generation of the combined random fronts
have been derived. The procedure is applicable to all spectral regions,
although it will be used for only the highest frequency region. The
procedure will be combined with the polynomial approach for Wse in
the lower spatial frequency regions in the next section.

4. LOW SPATIAL FREQUENCY REPRESENTATIONS

In this section we consider in detail the representation for
the lower frequency regions of the spatial spectrum. The development
is based on a polynomial representation and applies to both phase
and log-amplitude and their cross correlation.

In the following both the phase and 10g-amplitude will have polynomial
representations. That is, each manifestation of both the phase and

log-amplitude will be represented over the input aperture by the polynomial
series

(10a) 4(F) = §

"
——
&)
~—

—

(10b) o{r) = J ¢ s (¥)

where the .n(r) are a finite set of orthonormal polynomials defined
over the input aperture and the coefficients ins ¢p are gaussian

random variables with zero mean and variance yet to be determined.

The various random coefficients are in general correlated, cross-
correlations occuring both among the various log-amplitude coefficients
and among the various phase coefficients and also occuring between 1og-
amplitude and phase coefficients. The specific form of the individual
polynomials for one situation will be shown in the next section.

Using Eqs. (10) the contribution from the lower spatial frequency
ranges then has the form




N N
(Ma)  &y(r) = ) L dr) 43 ¢ vnlr).
n=1 n=1

Our goal is to find another representation in terms of a new
set of orthonormal polynomials ai(g) whose coefficients are also
gaussian random variables with zero mean out whose coeffcients are
uncorrelated. The complex log-amplitude will then be expanded in
a series of the new polynomials

UDEENCERRNAC

This new polynomial series will then be used for the random wave-

front generation. One merely generates the random coefficients,

cn, and sums the series at the desired values of r. The series with
uncorrelated coefficients is desirable because standard computer-

based random number generation schemes generally produce only uncorrelated
random numbers.

The procedure for generating the polynomials whose coefficients
will be uncorrelated is to diagonalize the covariance matrix of the
multivariate gaussian distribution associated with the orthonormal
polynomials. If there are N polynomials in the set, then there will
be 2N gaussian random variables. N are for the coefficients of the
log-amplitude representation and N are for the phase. Thus the joint
probability density for the 2N random variables is (Davenport, 1958)

(]2) P(¢]| Ca tnon]o e in) =

-N
(2-)7"1Q|exp - % 1% pemtntm * L1 Qeminimen * L1%.q8ntntn

g- - . » i3
where the matrix Q =C ! is the inverse of the covariance matrix, B,
including phase autocovariances, log-amplitude autocovariances, and
phase-1og-amp1itude cross-covariances. The covariance matrix is

defined by |
{

(13a) CQan = <bpdm’

(]3b) Cingm = <£n£m>

13




(13c) C;an = <t o>

The calculation of the covariance matrix elements will be discussed
later in this section.

The procedure for finding the new random independent coeffi-
cients is well known: transform to a new linear combination of coeffi-
cients which diagonalizes the quadratic form in the exponent of the
joint probability density function. To illustrate this we use a
matrix notation. The quadratic form, Q, in the exponent of Eq. (12)
is written in vector notation

(14a) 20=Vqv

where the vector, v, is

(ldb) V= (Q]'¢2 v .

:Noiltizo < QN)

and the matrix § is the inverse of the covariance matrix as indicated,
To diagonalize the quadratic form find vectors, W, satisfying the
matrix eigenvalue equation

(15) awn =W

Then the diagonalizing transformation is the modal matrix, ﬁ} whose
columns are the orthonormal eigenvectors, Wn.

=}

(16) MQqH-=

T is the diagonal matrix containing the eigenvalues, Then the new
random coefficients c, are given by

= -

(17) v=M

14




where

(18) c = (c]. cen CZN).

The cp are the desired random independent variables. They are gaussian
with zero mean because th? ¢n and ¢p are gaussian with zero mean. The
n

cnh also have variances )~ n 9iven by the diagonalized inverse covariance
matrix,

i

The complex log-amplitude in Eq. (11) can be rewritten in terms of
the new coefficients. Writing Eq. (11) in terms of a function vector,

(]9) E(F) T ('v"'lo bz v ‘.'lNo j‘l’-la J"Z Ul j'v"n)
we have
- 7T

r)v

(21) =R A C

Tae « § ¢
(22) =c(Me=]Ce (r)

where
(23)  a(F) = (54(F)s £pulF)s veny £y () = BT

Equation (22) is the desired result. The first order complex
log-amplitude, 41, is represented as a sum of orthonormal polynomials,
the tn(F), with random uncorrelated coefficients, the Cpye

We note some interesting features in this solution. The
polynomials £n(F) are in general complex, since the diagonalizing
transformation mixes log-amplitude and phase. The solution is also
identical to a solution of the Karhunen-Loeve problem. This is
demonstrated in Appendix B.
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We pow proceed to derive a general expression for the covariance
matrix C from which its inverse 0 =C-1 can be obtained. The deri-
vation involves a several step procedure. Basically the steps amount
to conceptually generating a wavefront which covers a large region
using the Fourier transform technique. The statistical properties
of this large wavefront are thus known from the procceding section.
Next imagine that we generate an ensemble of wavefronts and inter-
polate between the matrix of points using the sampling theorem
representation. Imagine that we then take the center one square
meter of each ensemble member and expand that in terms of the poly-
nomia’l representation of Egs. (10). We can then determire each of
the i,, and :n for earh ensemble member and further can determine
the covariances <>min>» <¢n¢n> and cross covariances, <iném> con-
stituting the elements of the covariance matrix. In Eqs. (10)

i(F) and ¢(F) are defined over a one square meter aperture. Using
the orthonormality assumed for the polynomials ¢n(F) we can write

(24) s o= F:(f) vn(r) w(r)dr

L J

where w(r) is the aperture function,

‘

(25) w(r) =1 J = 1/2 < x <1/2
-2y <2,
0 otherwise ,

The derivation of expressions for ¢p and 2y contains several steps.
First we use the procedure of the proceeding section to produce a phase
front at a large array of points by generating the random spectral matrices
R1 and R% and then the spectra ¢(Keg,Lrg) and (Kegslrg) as indicated

in Eqs. (7). We then take the inverse transform to obtain the phase
over the large array.

LB (K1) (M-1)+(L-1) (No1)
(26) :(MXO,NXO) = x(z) XZQ(KVO,LKO)E o

We then assume that the spectra are band 1imited and write a sampling
theorem expression for the phase at any point (x,y).
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F
(27) o(x,y) =) ) ¢ (Mx .Nx SInC7lj*-- (M- 33)]s1nCn[x
MN

- (33-Nﬂ

o]

where sinc(u) = sin(u)/u. Combining Eqs. (5), (24), (26) and (27) gives

(28) by = % E [Fa(Kxo.Luo)R](KKO,Lro) + Fb(kKo.LKO)RZ(Kvo.LKO)]

Un(KKo.LKO)

where

FE- ((K-1)(M=1)4(L=1) (N-1))

2
(292) U (K br) = w0 ] g V, (Mx WNx e ©

M

and

(296) V. (Mxlx, ) =de§ w(r)wn(F)sinCn{[§~ ; (M-33ﬂ sincr [f— - (33-Nﬂ}
0

(o}

A similar expression can be derived for the log-amplitude coefficients.

(29c¢) )

E[FC(KVO,LV.O)R](Kro,Lro)*'Fb( KKO,L»fO)Rz( Kr: LKO) ]Un( KKO .LKO) .

et

o'

Xt~-3

—

The covariance matrix elements then follow from Eqs. (13), (28),
and (29).

L I 2
(30a) (:Wn <4 or> E g CIF (Kol T+ F (K oli € U* (ke g alic)

Un(kvfo.xo)

-2
b Lo T (KrgabrgUp(Kug g Uy (KL

W mm———
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(30b) €, , =<rtps T (P (e g ol ) 241 Fy (e L )12
U (Keg oL Up (ki oL )
- E E K;ZFE(KKO.LKO)UE(KKO,on)un(KKO,LKO)
(30c) CQ o <znzza> s
n'm

= 2
= E g {Fa(KKO,LKO)FZ(Kxo,LKO) + |Fb{K<°.LK°)| }

UA(Ke oL JU (KoL)

-2
= é E Ko F (KKO,LKO)U;(KKO,on)Un(Kxo,on)

Equations (35) together with Eqs. (33) constitute the formal solution
for the covariance matrix. In the next section a particular set of
polynomials will be chosen. To go with these the particular associated
Vn(Mxg,Nxo) and Up(Kkg,Lxg) are.evaluated in Appendix C.

To summarize, we have considered in formal terms a method for generating
the contribution to the random wavefront from the lower spatial frequency
portions of the spectrum. A polynomial representation is derived
in which the complex log-amplitude is expressed in terms of a series
of complex orthonormal polynomials with random uncorrelated coefficients.
The variances of the coefficients are related to the covariance matrix
defined in terms of the cross correlation between the random expansion

coefficients. General expressions for the covariance matrix elements
are derived.
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5. RESULTS

We now proceed to give the specific details for the random wavefront
simulation. First the spectrum is partitioned and the low frequency
problem is treated. Then after choosing a arnup of ten polynomials
orthonormal over a source aperture of unit width, the resulting covériance
matrices, eigenvectors and eigenvalues are listed. The high frequency
problem which has been discussed previously is mentioned only in
regards to the svnerposition of the two results. Finally a typical
ensemble member, a single wave-front manifestation, is displayed.

The polynomials employed in the expansion of the wavefront are
listed in Eqs. (31)
Group 1

(31a)  yy(xuy) =1
. _[5 ;2.2 1
(31)  uy(x) = 63 (P2 1)

(1) vylx) = 6 [§ (D)

Group II

(31d)  wg(x,y) =12 xy

Group III
(31e)  wy(xwy) = 23

(31F)  wglxwy) = 1215 (xy° = 13 %)

(31g)  wglxwy) = 20ﬁ(x3- %x )

19
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Group 1V

(31h)  uy(xy) = 23y

(3114) *7(X.y) 12015 (yx° -

%é-y)

(313)  Mglay) = 247 (v% - 3 y)

As indicated the polynomials are chosen to be orthonormal over a
unit square as described by Eq. (25).

The grouping of the polynomials in Eqs. (31) was done o indicate
the similarities in symmetry. The first set vo(F)s va(F) and va(r)
employ the same combinations used by Fried (1965). Tﬁey are even
in both x and y. The second set, v5(r) is odd in both x and y. The
third set is odd in x and even in Y. The polynomials in the fourth
set are identical with those in the third set except for a ninety
degree rotation. As one might expect the statistical properties
of the last two sets will be identical becausc the correlation functions
and power spectra have central symmetry.

The next step after the choice of polynomials is the partitioning
of the spectra. We used a trial and error procedure to choose new
zero-frequency values for Fas Fby and Fc in the highest spatial frequency
region. For F; the zero frequency value chosen was 1.75 times the
value for the first harmonic. For Fp and F. the 2ero-frequency values
were set equal to the values of the respective first harmonics. Plots
of the difference spectra used for regions 1 and 2 are shown in Figs.
4. The circles indicate the values at the discrete points while
the solid curve comes from the interpolated values. The last curve
is an example of a poorly chosen zero frequency value.
The next step is the generation of the covariance matrix. There
is a simplification that arises in the covariance matrix because
of the symmetry properties of the particular set of polynomials which
can be most easily demornstrated by choosing a particular order for
the polynomials. Thus for the function vectory(F) in Eq, (19) we
choose a complex twenty element vector.
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(32) V(r) (jVO(F)'jV3(F)'j¢4(F)ijV5(?)njﬁ](F)'j¢6(r)-j$8(r)-

jcz(F)'jV7(F)njug(F)-Vo(F)'k3(F)nU4(F)o¢5(F)a

;](F).;G(F).;8(f).:2(F).&7(F).;9(5)).

The imaginary part is

given first for later convenience in displaying
the results.

The simplification is that the covariance

matrix divides into
simpler submatrices as shown in Eq. (33).

Group |

6 x 6
E Group [11

6 x 6
' Group 1V

It might be noted that a covariance matrix of the form shown in
Eq. (33) exists for each of the low frequency spectral regions.

} The covariance matrices, eigenvalues and eigenvectors for
spectral regions n=1 and n=2 are shown in Table I. The submatrices
are divided into sections. The upper left and lower right quadrants
contain phase and 1og-amplitude covariances respectively, The other
two quadrants contain phase-1o0g-amp1i tude cross-covariances,

The eigenvalues are listed in the next row in decreasing order.
Below each eigenvalue is the corresponding eigenvector. It is in-
teresting to note that the eigenvectors with one excepetion all
contain one element very near unity and with the other elements
smaller by at least several orders of magnitude. This indicates
that for these eigenvalues: first there is very little cross-
coupling between phase and log-amplitude, and second that the poly-
nomials chosen are indeed quite reasonable representations of the
actual eigenfunctions. The one exception is a mixing between the
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consistant and spherical terms for n=1. The result is two in-
tensity patterns neither of which is constant. It seems reasonable
that a constant intensity would not be one of the "natural" patterns
for atmospherically degraded light.

The adjusted spectra Fy, Fb, and Fc for the region n=0 are

shown in Figs. 5. The two-dimensional integral of these are ob-
tained and combined to form the variances of phase and log-amplitude.
These variances are shown in Table 2 along with the sums of the
eigenvalues for regions n=1 and 2. It is interesting that the phase
variances for other than the constant term are larger than the phase
variance in region n=0. The log-amplitude contribution of region
n=0 is much larger than that from region n=1, thus indicating the
"high pass" property of the atmosphere to amplitude fluctuations.

Fiqures 6 are contour plots made from a typical manifestation ;
of a degraded wavefront. There we see the contributions from the
regions n=¢,1 and 0. The contour lines are drawn every half wave-
length for phase and every half radian for l1og amplitude. As
expected the contours are more closely spaced in the high frequency
regions. For lower spatial frequencies than n=2 the contribution is
merely a constant ard is not shown. : ]

The results of Table II tend to indicate that the Fourier trans-
form technique and the polynomial approach are both necessary and
important in the complete description of light that has come down
through the atmosphere. One might ask if the polynomial approach
could be used to alone simulate atmospherically degraded wavefronts.

To answer that question we consider some further results of a

slightly different nature. The Karhunen-Loeve integral equation

was solved numerically using the correlation function derived from

the phase spectrum of Fig. 2. A grid of eight by eight points was
used, The eigenvalues are shown in Appendix D aleng with the designations
of a few low order eigenfunctions. Reference to that appendix shows
that the eigenvalues are very closely spaced in value indicating

that it would be difficult to reject any of the eigenfunctions. Thus
all sixty-four eigenfunctions would be necessary for the coarse grained
eight by eight simulation. Even if all the eigenfunctions were used
they would have to be summed at each point with random coefficients

to generate the simulated wavefront. If all those random coefficients
are going to be necessary it seems much more economical of time to

use the Fourier transform technique to generate the wavefronts directly
than to have to sum over each eigenfunction for every point desired,
Thus for the high spatial frequency region the Fourier transform
approach seems much more economical than the eigenfunction approach.

On the other hand the polynomial approach requires many fewer terms

in the lower spatial frequency region. The general conclusion then

is that the combination is the appropriate one where both high and

low frequencies are involved all together.
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Fig. 6a. Contour plots of the contributions from spectral regions n=0,
1, and 2 to phase front and 1og-amplitude front.
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Fig, 6b. Contour plots of the contributions from spectral regions n=0,
1, and 2 to phase front and log-amplitude front.
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Fig, 6c. Contour plots of the contributions from spectral regions n=0,
1, and 2 to phase front and log-amplitude front.




Fig, 6d. Contour plots of the contributions from spectral regions n=0,
1, and 2 to phase front and log-amplitude front.
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Fig. 6e. Contour plots of the contributions from spectral regions n=0,
1, and 2 to phase front and log-amplitude front.
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Fig. 6f, Contour plots of the contributions from spectral regions n=0,
1, and 2 to phase front and log-amplitude front.
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TABLE 11

n Variance
Phase Log-amplitude
0 2220 .3017x1073
.5543x10% 93307076
2 .2068x10% 27881078

One other item might be mentioned in passing. In the application
of the polynomial scheme it is required that the eigenvalues be positive
if the schemg js to be used for wavefront simulation because the

This requires that the covariance matrix be positive-definite. 1In
the scheme for splitting the spectra into regions there is no obvious
way of assuming that the new spectra thus generated will lead to
positive-definite matrices. In the case at hand it has worked out
that way and perhaps always will. The method of relating the usual
requirement for pcsitive definiteness, that a'l the sub determinants

be positive, to the spectra is not obvious. More work rould be done
on this point.

Finally after the new spectra have been computed for region n=0,
ard the eigenfunctions and eigenvalues have been obtained for regions
n=1 ... 4 we can actually generate the random wavefronts. This is
done using Eqs. (5) and (9) for the highest spectral region and Eq.
(22) for the lower spectral regions. The procedure is illustrated
in the computer algorithm shown in Fig. 7.

To summarize, in this section the complete wavefront simulation
scheme was illustrated for the spectra under consideration. A set
of polynomials was chosen for the low frequency spectral regions,
and the covariance matrix diagonalized to give the Karhunen-Loeve
polynomials appropriate for uncorrelated random coefficients. A

complete wave-front was illustrated in terms of the contributions
from the various spectral regions.

6. SUMMARY

To summarize, we have developed a scheme for simulating randomly
degraded optical beams including both phase and log-amplitude and
the effect of their cross-correlation, The scheme works for optical
degradations whose scale lengths range from much smaller to much
larger than the input aperture size. An extension of the well-known
Fourier transform method is used for the small scale fluctuations
and a polynomial approach is used for the larger scale fluctuations.
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In the report Section 2 contains a discussion of the physical
Situation. This is characterized by a large range of scale sizes
for the fluctuations; a difficult problem for the Fourier transform
procedure alone because a prohibitively large array would be required.
The spatial spectrum is split into regions, the contribution to the
degraded optical beam from each spectral region to be computed
separately. Treated in Section 3 is the highest spatial frequency
region in which the Fourier transform approach is used. In this section
the mathematical formalism for using the Fourier transform approach
to generate both phase and log-amplitude fluctuations including their
correlation is derived. In Section 4 the contributions from the
lower spatial spatial frequency regions are considered. These are
generated using a polynomial approach. The procedure for finding the
set of polynomials which could be used with the uncorrelated random
numbers that can be easily generated by a digital computer is worked
out. It is shown in Appendix B that the procedure is formally identical
to the Karhunen-Loeve procedure.

In Section 5 the procedures developed in Sections 2, 3, and 4
are demonstrated in the simulation of an optical beam that has come
down through the atmosphere. The spatial spectral division is il-
lustrated and a particular set of orthonormal polynomials is trans-
formed into the polynomials appropriate for uncorrelated random
coefficients. The Fourier transform technique is used for the
highest frequency portion of the spatial spectrum. Finally a
sample composite wavefront is illustrated, showing the relative
contributions from the various frequency ranges.

7. CONCLUSIONS

The problem considered initially in this project was to find
a technique for the computer simulation of radomly degraded optical
beams including phase and log-amplitude fluctuations. In the process
two approaches were to be considered, the Fourier transform approach
used previously by others and the ¥arhunen-Loeve polynomial approach.

Ve can conclude that a technique has been found. It is to first find
spatial spectra that can be combined to give phase and log-amplitude;
second to split these spectra into regions, each with its own spectra;
and third to find the contributions to the wave front from each
spectral region. An extension of the Fourier transform technique is
used in the highest spectral region while a polynomial scheme is
used in the lower frequency regions. The technique is one which makes
efficient use of computer time because a polynomial approach is used
to simulate the effects of the large scale fluctuations which vary more
slowly over the input aperture and the Fourier transform procedure is
used where it is best suited in the simulation of small scale fluctuations.,
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During the process of developing this wavefront simulation algorithm
several other problems were solved. The problem of using the Fourier
transform method to simulate both phase and log-amplitude fluctuations
ncluding their crass-correlation was solved. The problem of using the
Karhunen-Loeve approach for wavefront simulation was considered and
extended to a complex variable, the complex log-amplitude, thus enabling
the application of that approach to both phase and log-amplitude, A
problem of handling the large range of spatial scale sizes was solved by
the spatial frequency division. Further the problem was solved using an
efficient scheme by combining the Fourier transform approach and the
polynomial approach 7or ranges where they can be most suitably used,

This technique will be especially useful in the computer examination of
active systems to be used for the compensation of atmospheric degradation
of images (satellite, etc.) the light for which has propagated large

; distances down through the atmosphere,
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APPENDIX A
SPECTRA

In this appendix we derive the expressions for the spatial specira
of phase and log-amplitude covariances and the phase-log amplitude
cross covariance for light that has propagated down throuah the
atmosphere, The expressions draw upon work in the literature
(Tatarski, 1971) and end up with computer evaluation of Lhe associated
integral expressions. In this case the specira are particularly sig-
nificant because they apply to a light heam which has propaaated down
through the atmosphere where there is a much larcer low spatial fre-
quency content than for light propagated horizontally near the ground,

The starting point for the three spectra are expressions in the
literature (Tatarski, 1971, Fgqs. 5-27, 5-33, 46-14,15,16, and 46-22,
23,25,26),

(1a) F](?#,L) = k | exp ——gp—— Fn(Ff,z'-z“)dz‘dz“
0°0
L L 5 2 ] 1]
s " ¢ f =1 (ZL-Z s ) F - ' " ‘ "
(]b) FZ(T'L) % =il : exp "-“""’2“2""‘"‘— n(rT.Z -z )dZ dz
0°0
1
(1c) F = i [F] + Re(Fz)]
21 _
(1d) F, = 5 [F, - Re(F,)]
1
(le}) F = 5 Im FZ
e
(1) B (:) = 2 I 3 (e, F (g L beqther
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(9) Fplpuzt=zn) = [ o 0”27

where a stands for i,s, or ‘¢y and v = (“x-“y) is the transverse
component of «. In Eqs. (1) we are considering a plane wave propagating
in the z direction from z=0 to z=| so that z' and z" are_two points
along the path. 1=2r/k is the light wavelength, and ¢nlv,2) is the re-
fractive index spatial spectrum. We also assume that the index

spectrum is a slowly varying function of mean position, (1/2)(z'+z")
along the path.

As a first step in evaluating the integrals in Eqs, (1) we switch
to sum and difference coordinates arranging the integration limits in
such a way as to perform the difference coordinate integration first,

(2a) # = 2' - 2 2' =+

(2b) o .2tz p,

Combining Eqs, (2), (1a), and (19), gives

jr%f_
e L/2 2n S & = it &
(3) F]("T)L) = k2 f dn J dn e 2k [ d. 'n(K.r])e =
"0 =2n J-ou
(L-n) Tj“%
L 2 L-n i 1% £
+ k2 J dr]j e 2k J de s (W,n)e 2
L/2  7-2(L-n) i

Performing the integration, making the substitution n'=L-¢ in
the second integral and combining the integrals results in
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' 2 (L/z v '$
(46) F](‘TvL) = 4k JO ndn J-' thSinC 2n ?F + ’Z

In Eqs. (4a), by definition, sinc(x)=sin(x)/x. Performing similar
operations on the F2 integral gives

- 9 [L/Z (
(4b) F2(>T,L) = -4k . rl(f".j er‘f_S'inC(anZ)
C 2,
() il
(manle K srpltene K

We assume a von Karman typs of refractive index specti'um where
both the structure parameter, Cg5 and the outer scale, L0 are
functions of height h given by Eqs. (5)

(5b) cZ(h) = cA(n ) (h/h )74/
(5c)  L(h) = L (H))(h/H)

Ve are considering downward propagation from height Hy to height H,
so that the height is related to the path variable, n, by

h = HL e (HL'HO)(W/L) .
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Ho is the height at the bottom of the path so that

2 2 H H e
() - cn(no)(g; R (ﬁ- 1))

L (r) +L (H) 0! - 1 EL- -1
o\" 0''o ﬁ; L\ H,

Combining Egs.
B

(1c), (1d), (4a), (5), and (6) we have for Foo F¢, and
L¢

=

H H WA o2 K2
(et o) T (el
0 0 \

X

) ) L2

l (7a) F, = &% x 0.033 cZ(H ) fo dn [,
|

l

]

| AT LR . . g
r + ﬁ;" -:; -1 (sinc 2nmp e, -sinc(2nx, )cos "
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L L/2
(7b) F, = 2k? x 0.033 cﬁ(uo) j ndn
0

H c4/3
- 1)) (sinc(Z

j dx
-l z

:
7 +Kz» +s1‘nc(2nKz)COS

2

(kl (L-n))

_]))ZH

I

2, 2 )”6
2

| &
+KZ +s1nc(2m<z )cos (—-'-(—))

.y L/2
(7¢) F,,= %% x 0.033 cﬁ(Ho) f ndn J
0

2

@x

-

d

b4

)11/6

s1nc(2nKz) X




Equations (7) can be further simplified after examining the offset in the

! sinc function in comparison with the width of the term raised to the
] nower 11/6

Thus the offset o' the sinc function is never significant and can
be neglected. fquitions (7) then reduces to

I, 2 L/2 ™

= 3 2 ( Y ' i ;
| (9a) F_ = 2k x 0.033 CplH.) Jy dn | dvsin(2n)
f 4/3 2
3 T
i Gl (1-cos p (k=)
xJ' 0 0 e %
2 11/6
((1.077 +,$+'z )
\ (HL L ) 2
L(H)| — - '~<—-— -1
3 0o'o HO L H0
i
H H o4/3 : %"
(__I.__ gm)(_L ]D 1 -cos(k—
.\, O\ F,
1.077 2, 2 \'Vé
Y trr ity
o(Ho)<'H-(;- L (ﬁ; '9)
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= 2.2 2
(9c) F,: = 2k” x 0.033 Cn(HO)

. nd-, j-’”dr251nc(2nrz)




It is usef!l to have the spectral expressions expressed not in terms
of k and C&s but in terms of the coherence lengh, ro to allow easier
comparison with the physical situation.

To do this we consider Fi+Fys the spectrum of the wave structure
function, for the case where the transverse spatial frequency «t is

larger than 2+/Lo. For this case Fw the wave structure function
spectrum reduces to

. - L/2 » sinc(2ne, )
(0a) - ak” x 0.033 c2(h ) f ndn f L em
0 e (eptey)
z
-4/3
H H -4/3 [ H i
e ) (b5 (3 1)

The width o theqsiTﬁlgunction, /2n, is always less than ¥T» the
width of (+# + .2)~ because the size of z typical refractive

index f1uctuatioﬁ. i=2r/vT is always less than the range,n. Thus
we have

L/2 -4/3
" 2y 3y, 211/3 H H
(10b) Fy o 2<% =0.033 Cn(Ho)..T f d'{(;TL‘ - .l'_r_ (_L -))

. ‘0 o Ho
-4/

+(1(u “_L-1))
Ho L H0

fu';
X ) 2n dr, sinc (anz)

-

2 2 11/3 H i
= 9 s 0
= 27k~ x 0.033 Cn(Ho)'T (3Ho) [1 '(FTL_) ]

A wave structure function

(Ma) o, = 6.88(or°)5/3
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[ corresponds to a spectrum

| (11b) F (o) = 6.88:(11/6)2°/3 ,~1V/3 s -11/3

573, 6 T1/6) T
) 5 0
} Comparing Eqs. (10c) and (11b) we see that
= +3/5
L6880 (1170123 |
e i
0 H

173 ‘
- 2 2 .
' (2:)(6/5)1(1/6)k xo.o33cn(Ho)(3no)<1 -(;;L—) ) :

r

| 3/5

_6.88 L
2 2 f Ho 1/2

2.9k (3H0)Cn(1 -\W) )

i

In Eqs. (9) substitute

2 2.,y . 6.88 (11/6)2°/3 _

2k" x O.O33Cn(H0) i

! 2
2 “(6/5) (1/6)(3H0)(1 (ﬁ’—)

WA \ 5/3
r
] o

This is included begause it is often simpler to work in terms of r
rather than k and C§. Equation (9) and (12} are the results of this
writeup, Figures 1 and 3 in the text are the results of computer
evaluations of the expressions given.
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APPENDIX B

In this appendix we consider the polynomial representation
used for the lower €requency portions of the spatial spectrum.
Specifically we derive the Karhunen-Loeve expansion for a complex
function and show that the procedure for diagonalizing the gaussian
multivariate distribution is equivalent to solving the Karhunen-
Loeve problem.

To start we postulate formalism for the Karhunen-Loeve
expansion for a random complex function. We apply th's to the
complex log-amplitude but the development holds for any complex
function. Let the random complex function have real and imaginary
parts i(r) and :(¥) respectively and represent it by the complex
function vector

(81) x(r) = (:(¥) + ja(r))

The covariance functions are represented by a complex function
matrix

e C,-(F‘ -F) 'Jc (FI sF)
(82) Cir',r) = i =
JiC (r' o) C (')
where
(B3) €, (7P =<a(F)i(F)>

(B3b)  C, (FiP) = <i(F) +(F)
(B3c)  C,,(ryr) = <:(¥') «(F)>

The spectra of C;,(r',r), C,;.(¥',r) and C..(r',r) are calculated
in Appendix A for the case of interest. The Karhunen-Loeve integral
equation is formally stated
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2 o o
(Ba) S dr Clr'r) x(r) = 2x(r)
Jll\
where A corresponds to the domain of interest where i(r) arg +(r)
are non-zero. Equation (B4) cortvesponds to the two coupled integral
equations
i e . -~ - r . - - N -
(B5a) drC  (r',r).(r) + dr C. (r',r)e(r) = 2¢(r")
PN T A N
|
T _ ] o o B
(BSb) Iia drC (r'yr).(r) + ' dr C..{r'yr)i(r) = 2u(r")
' "'A 5

Equations (B5) reduce to the standard Karhunen-Loeve equations if
(r) and :(r) are uncorrelated.

To solve Eqs. (B5) we use a polynomial series representation.

(B6a) i) = i a ()

(B6b) o(r) = z:onln(F)

The zero subscripts on the .., and ‘on are intended to differentiate
this expansion from the simi?ar_expansion in Eqs. (10) in the main
text. The orthorormal set ¢ (n(r)! should be complete. In practice

we will use a truncated series for which the eigenvalues corresponding
to the neglected terms are sufficiently small so that the terms dropped
are indeed neqligible. Inserting solutions (B6) into Egs. (B5), multi-
plying through by 1m(r') and integrating with respect to r' gives

N
(B7a) ) C.. i +7C. i =
1 7 1

(B76)  JC,, s +TC. s =i




where

) <, =f££[ dF dF" 2 (7)C(FP)a (FIw(FIn(F') |

The subscripts 1 and v in Eq. (B7c) stand for & and ¢, Equalions
{B7) can be combined into a single matrix eigenvalue equation,

(88) Ty= )y

where the matrix T contains C,., C,, and C,.s and the vector y
contains both i, and o @S indicatéd in Eqs: (B9)

: E
Y ! C.J‘A.
S| i N
! !
- ]
(89a) C = ! C,, | C..
| B . S ——. I
C_, \ 1 C‘
N Bhack
|
|
C ] C
p't)uvl: s

(B9) ¥ = lsgys 2gpe <+ sy, ‘o1, ‘02 """ ‘on)

Equation (B8) is simply solved by th. rel1-known procedure which starts
with setting the determinent

B10) IT- ] =0
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The resultant values for the eiggnvalues, », then give the eigenvectors
yp and the diagonalizing matrix My whose co?umns are the normalized
eigenvectors. The diagonalizing transformation is

(B11) y = MOE

We now display the connection with the multivariate distri-
bution indicated in the text. Multiplying Eq. (B8) from the left
by =1 ¢-1 gives

(Bl2a) qy=12"'7y

where

(B12b) Q=¢)

Equations (B12) are identical with Eq. (15) in the text if we equate
the orthonormal polynomials .n(r) and an(r). Further the eigenvalues
of the § matrix in the multivariate distribution are merely the re-
ciprocals of those of the Karhunen-Loeve problem and the eigenvectors
Yn and W, are identical.

This completes the desired demonstrations: the derivation of the
associated Karhunen-Loeve problem and the demonstration of the equiva-
lence of the multivariate and Karhunen-Loeve approaches.
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APPENDIX (

lle now derive expressions for the functions U and

(K ouL o)
V(Mxg,Nxq) which were introduced in the main test Eqs. (29? in the
main text.

Without loss of generality, we display only the development

for the phase. To begin, assume that the orthonormal functions are
polynomials in x ari y so that in general

(C-1) o xay) =3 T g xPya,
n D q np q

Tren for a square aperture the function V_(Mx .Nxo) can be written
in the form e

(C-2) Vn(Mxo.Nxo) =) gnpqlp(M) Iq(N)
where
J2 ]
fxo q ., X
(C-3) I (N) = | dx x* sinct|= - (N-33) .
q J_xo/g 0 .

The function U(KrO.L.O) in Eq. (29a) can also be written
in the more detailed form,

N 121 (Mo1) (K-1)
(c-5) T (k) = (2) I 1) e N

M=1

For the polynomials listed in Eqs. (31) the functions Ug(K ok 0)
through Ug(KnO.Lwo) have the following form:




(C6a) UplKkgalky) = T (ks )T (Ls )

(Ceb) U](Kk

-~

>

~—
"

2/§_TO(K»O)T](LVO)

(Céc) U

>
>
o
-
—
~
(e}
~—
i

-ZJS}](KvO)TO( )

L
o

‘ , .5 |
(Coa)  U3lKhguLkg) = 6 5 [T (K )TolLig) + Ty(Ke )T (Lr)

- g TolK T (L )]
(C6e)  U,(Kk LK ) - b,\éé[ro(h-o)Tz(Kyo) - Tk )T (Lr )]
(C6f)  UglKkyuLkg) = =12 T, (K )T, (Lv )
(C69)  Ug(Kk Lk ) = 12J?§'[12(K.0)T](2k0) - %E-TO(K»O)T](LKO)]
(C6h) Up(Kkgalkg) = =12.T50T, (K )T, (Le ) = T T, (ke ) T (L )]
(C61) UKk k) = 20]7 [T (K )Ty(Ls ) - % 7oK )Ty (Lr )]
(C63) Uy (KkpaLky) = -20.7 [Ty(k )T (L. ) - 35 Ty (ke )T (L)
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APPENDIX D

corresponded to the phase function calculated in Appendix A,

ETGENVALUES
9999t 0 -(0,0) .1875E
.9220E -7 -(2,0) .4423E
.1802E -7 . 1590E
.8486E -8 .8486E
.4575E -8 .4162E
.3201E -8 .3015E
.2281E -8 .2254E
f .2005E -8 . 1958E
: .1586E -8 .1563E
| .1461E -8 .1461E
.1249E -8 .1232E
.1071t -8 . 1065E
.9478E -9 .8773E

-5 -(1,0)
-7 -(1,2)

.
-8
-8
-8
-8
-8
-8

. 1599
.2537E
.8994E
.6234E
L4043t
.2565E
.2034E
7128
.1473E
.1343E
.1199E
. 9599E
.8269E

This appendix contains a listing of the sixty four eigenvalues
of a solution for the Karhunen-Loeve inte

gral equation assuming an
eight by eight grid for the aperture plane.

The correlation function

.1347E
.2537E
.8636E
.4873E
.3321E
.2565E
.2006E
. 1586E
.1474E
. 1264E
L1072t
.9580E
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